Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification

نویسندگان

  • Anh Huy Phan
  • Andrzej Cichocki
چکیده

Analysis of high dimensional data in modern applications, such as neuroscience, text mining, spectral analysis or chemometrices naturally requires tensor decomposition methods. The Tucker decompositions allow us to extract hidden factors (component matrices) with a different dimension in each mode and investigate interactions among various modes. The Alternating Least Squares (ALS) algorithms have been confirmed effective and efficient in most of tensor decompositions, especially, Tucker with orthogonality constraints. However, for nonnegative Tucker decomposition (NTD), standard ALS algorithms suffer from unstable convergence properties, demand high computational cost for large scale problems due to matrix inversion and often return suboptimal solutions. Moreover, they are quite sensitive with respect to noise, and can be relatively slow in the special case when the data are nearly collinear. In this paper, we propose a new algorithm for nonnegative Tucker decomposition based on constrained minimization of a set of local cost functions and Hierarchical Alternating Least Squares (HALS). The developed HALS NTD algorithm sequentially updates components, hence avoids matrix inversion, and is suitable for large-scale problems. The proposed algorithm is also regularized with additional constraint terms such as sparseness, orthogonality, smoothness, and especially discriminant constraints for classification problems. Extensive experiments confirm the validity and higher performance of the developed algorithm in comparison with other existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Sparse Nonnegative Tucker Decompositions

There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as ge...

متن کامل

Alternating proximal gradient method for sparse nonnegative Tucker decomposition

Multi-way data arises inmany applications such as electroencephalography classification, face recognition, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD), which is to decompose a given tensor into the p...

متن کامل

InfTucker: t-Process based Infinite Tensor Decomposition

Tensor decomposition is a powerful tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—conduct multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To ad...

متن کامل

An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors

We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an N th-order tensor in ...

متن کامل

Completely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations

The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011